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Abstract
The influence of certain equilibrium flows on the stability of tearing modes in the reversed-field pinch is investigated.
By solving the linearized magnetohydrodynamic equations in cylindrical geometry, the tearing mode stability factor
�′ is calculated for a variety of axial flow profiles which have nonzero shear away from the rational surface, including
flows localized entirely in the external, ideal region of the tearing mode. It is found that both m = 1 and m = 0
modes are destabilized by an axial flow localized near the edge of the plasma. This is the kind of flow that might be
generated by any physical process creating an edge-localized radial electric field. A global flow profile with shear
over the middle region of the plasma, simulating the differential rotation of core and edge modes observed in some
reversed-field pinch discharges, is found to have a destabilizing effect on the m = 1 mode, while leaving the stability
parameter of the m = 0 mode practically unchanged. The possible connection of these results with features of the
spontaneous enhanced confinement regime in the Madison Symmetric Torus is discussed.

PACS numbers: 52.55.Lf, 52.55.-s

1. Introduction

Tearing mode activity plays an important role in the evolution
of magnetic confinement discharges. This is particularly
true for the reversed-field pinch (RFP), a toroidal device
which, in contrast to the tokamak, has toroidal and poloidal
magnetic fields of comparable magnitude. This makes the
radial profile of the q-factor less than unity everywhere, and
global tearing modes are unstable. In the RFP, large-scale
magnetic fluctuations associated with tearing modes govern
both particle [1] and energy [2] transport in the plasma core.
Tearing modes also drive a nonlinear dynamo responsible
for the reversal of the toroidal field [3], and produce bursty
plasma relaxations (RFP sawteeth) [4–7]. Torques generated
by the nonlinear interaction of tearing instabilities on different
rational surfaces regulate the global momentum balance, and
periodically brake plasma rotation during sawtooth events
[8, 9]. Finally, Reynolds stress associated with tearing modes
may generate regions of flow shear localized around mode
rational surfaces [10].

In order to understand the complex dynamics of magnetic
confinement discharges it is important to consider how these
tearing mode-induced phenomena in turn affect the stability
of the tearing mode. For example, the enhancement of the
transport due to the magnetic turbulence generated when

magnetic islands overlap leads to modifications of the plasma
profiles, which in turn affects the stability of tearing modes.
This interaction between transport and resistive instability has
been, and continues to be, a subject of study both in tokamak
and RFP research. In the tokamak case this interaction is
relevant to the onset of disruptions [11, 12]. In the RFP,
it underlies the tendency of the plasma to relax to a state
with reduced free energy and fluctuations [13, 14]. Another
important, though less studied, example is the link between
regions of shear flow, which are created by linear and nonlinear
effects associated with tearing modes, or by other physical
processes, and the modification of the stability of tearing modes
due to such flows.

An RFP regime in which the dynamical interplay between
tearing modes and flows may play an important role is
the spontaneous enhanced confinement (EC) regime [15, 16]
observed in the Madison Symmetric Torus (MST) [17].
This regime bears some similarities to the tokamak high-
confinement, or H-mode, regime, which also can be generated
spontaneously [18]. Although the mechanisms that lead to,
and maintain a spontaneous EC discharge are not completely
understood, a number of reproducible features are evident
from experimental data. The spontaneous EC regime sets
up following a sawtooth crash in discharges with sufficiently
strong toroidal magnetic field reversal. The crash in the
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RFP consists of a sudden increase of the m = 1 modes,
which is followed almost immediately by a corresponding
increase in the m = 0 mode. The increased activity of
these modes induces an effective nonlinear torque which
momentarily modifies the rotation of the plasma. Away from
crashes, the plasma rotation is characterized by a flow profile
that increases in going from the edge of the plasma inward.
The torque due to the crash-induced nonlinear interaction
of core m = 1 and edge m = 0 modes slows down the
core modes, thus leading to a rigid-rotor-like plasma rotation.
As the increased level of magnetic fluctuations decays to its
pre-crash value, and the plasma rotation returns to its pre-
crash pattern, some discharges bifurcate into an EC regime.
Among the characteristics of this regime are a reduced level
of magnetic and electrostatic fluctuations, the presence of an
E × B shear flow localized at the edge of the plasma, and the
occurrence of periodic bursts of m = 0 activity. Moreover,
some spontaneous EC regimes enter a quasi-single-helicity
(QSH) state, i.e. a state in which the magnetic fluctuation
spectrum is dominated by the innermost resonant m = 1
mode. Spontaneous EC regimes have been observed to last
up to 20 ms.

In this work we investigate the interaction between regions
of sheared plasma flow and tearing mode stability in the
MST spontaneous EC discharge. The principal objective
is to determine whether or not the effect of shear flow on
the stability of tearing modes could offer an explanation
to some of the peculiar features of these discharges. To
address this possibility, we consider the linearized ideal
magnetohydrodynamic (MHD) model in cylindrical geometry,
and calculate the tearing mode stability factor �′ in the
presence of equilibrium flows. We use flow profiles which
mimic both the localized shear flow and the more global-scale
rotation profile observed in the spontaneous EC regime. The
numerical calculations of the stability factor carried out in
this work are based entirely on linear theory. Even though
tearing modes enter the nonlinear phase at very low amplitude
(when the island width is comparable to the thin resistive layer),
the results of our approach are relevant since it is known that
nonlinear effects do not substantially change the threshold of
instability, �′ = 0 [19, 20].

Considerable attention has been devoted to the study of
stability properties of plasmas with flows. Rigid plasma
rotation has been shown to have mitigating effects on resistive
wall MHD instabilities [21, 22]. Previous work on tearing
modes with sheared equilibrium flows [23–31] considered
flows centred at the mode rational surface with shear inside
the resistive layer, and focused on how the flow changes
the scaling of the growth rate. Some of these works also
point out the possible important influence of shear flow on
�′ [23,31]. A detailed study of this latter issue was carried out
in [32]. There, the reduced ideal MHD equations, valid for a
tokamak field configuration (Bz = const. � Bθ ), were solved
numerically in cylindrical geometry, and �′ for tearing modes
was calculated for large-scale plasma rotations. Although the
approach followed in this work is similar to the approach of
[32], it differs in at least two important respects. First, we
consider a configuration in which both the equilibrium fieldsBθ

and Bz are radially dependent, as is the case for the RFP. This
calls for a solution of the full ideal MHD system. Secondly, we

consider both localized and global regions of flow shear, while
only the global case was considered in [32]. Our research goal
is specific to the RFP, to wit, we seek to understand global
resistive stability under the equilibrium magnetic field profiles
and the geometric parameters representative of spontaneous
EC discharges in MST. Because the situation with flow shear
in a resistive layer has been studied, we focus on cases where
flow within the resistive layer is nearly uniform, and shear is
restricted to outer regions.

The principal result of this work is that both a narrow
region of flow shear localized outside the reversal radius,
and a global flow with nonzero shear in the middle region
of the plasma (the latter defined to be the region between
the m = 1, n = −6 rational surface and the reversal
radius), increase �′ of both core and edge tearing modes in
the spontaneous EC regime. Of particular relevance is the
fact that an edge-localized region of flow shear of sufficient
strength destabilizes the m = 0 mode. This finding could
offer an explanation for the periodic m = 0 activity observed
during the spontaneous EC regime. The cycle associated with
m = 0 bursts can be viewed as a relaxation oscillation regulated
by the competition between the destabilization induced by
the shear flow (possibly in combination with current density
and pressure gradient effects), and the diffusion properties of
the equilibrium. Moreover, we notice that if the ideal MHD
results obtained in this paper are complemented with available
results on inner-layer (resistive) effects, a possible explanation
emerges as to why states in which the fluctuation spectrum
is dominated by the innermost resonant m = 1 mode (QSH
states) are sometimes observed in MST discharges.

In the following two sections we present the mathematical
model which is used in the remainder of the paper. In particular,
in section 2 we present the equation for the perturbed radial
magnetic field in the outer region, and include an equilibrium
flow. In section 3 we summarize the derivation of the stability
factor, and discuss how the flow alters the static result. In
section 4 we present the results of numerical calculations to
determine the influence of an axial flow on the stability of both
m = 1 and m = 0 modes in MST. We use magnetic equilibrium
profiles which are derived from experimental data relative to
a spontaneous EC discharge. Two classes of flow profiles are
used. The first class encompasses flow profiles which are of
narrow extent and localized in the outer region of the plasma,
while the second class includes a broad flow profile with shear
in the middle region of the plasma. In both cases, the flow
inside the resistive layer of the mode under consideration is
taken to have zero or negligible shear. The numerical results
are discussed further in section 5 and compared to an analytical
expression for the stability factor. The analytic results support
the numerical results and clarify how the characteristics of a
flow profile affect the stability of the mode. Finally, in section 6
we show that our results could offer possible explanations
for some characteristic features of spontaneous EC regimes
in MST.

2. Ideal MHD equation for the perturbing radial
magnetic field

The linear stability of resistive modes can be calculated by
solving the ideal MHD equations [33]. This is due to the fact
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that resistivity, which creates a magnetic island, is important
only in a thin layer around the rational surface (inner layer),
while the free energy driving the instability comes mainly
from the equilibrium quantities over the remaining plasma
cross-section (outer region), where nonideal effects play a
negligible role.

We approximate the MHD system assuming incompress-
ibility and constant density,

ρ = const., ∇ · V = 0, ∇ · B = 0, (1)

ρ

[
∂V
∂t

+ (V · ∇) V
]

+ ∇p − J × B = 0, (2)

µ0J = ∇ × B,
∂B
∂t

= −∇ × E, E = −V × B.

(3)

In cylindrical geometry (r, θ, z), and for equilibrium fields of
the form

B(r, θ, t) = Bθ(r)θ̂ + Bz(r)ẑ,

V(r, θ, t) = Vθ(r)θ̂ + Vz(r)ẑ,

the radial component of the momentum equation, which
describes the linear plasma equilibrium, is given by

V 2
θ = r

ρ

dp

dr
+

B2
θ

ρµ0
+

r

2ρµ0

dB2

dr
, (4)

where B2 = B2
θ + B2

z . Note that only the poloidal component
of the velocity is present in the radial force balance, due
to the axial symmetry of the cylindrical system. As first
described in [34] for static equilibria, the linearized versions
of equations (1)–(3) can be combined into a single second-
order equation for the radial magnetic perturbation B̃r . We
write this equation as

d2B̃r (r)

dr2
+ C(r)

dB̃r (r)

dr
+ D(r) B̃r (r) = 0, (5)

where we have assumed for any perturbed quantity â(r, θ, z; t)

the form ã(r) exp[i(mθ+kzz+ωt)]. Besides radial dependence,
the two coefficients in equation (5) depend on the poloidal
mode number m, the axial wavevector kz, and the frequency ω.
To give concise expressions for these coefficients, we introduce
the following radially dependent quantities:

F = k · B, G = k · V, V 2 = V 2
θ + V 2

z ,

� = ω + G, ϒ = (µ0ρ)1/2�

F
,

Mlθ ,lz = lθ m2 + lz k2
z r

2, H = r3(1 − ϒ2)

M1,1
,

(6)

and

F = m

r
Bθ

[
M1,1

m2(1 − ϒ2)
− k2

z r
2

m2

]
+ kzBz,

where lθ , lz are positive integers. The coefficients of
equation (5) can then be succinctly written as

C = 1

H

dH

dr
, D = g − 1

HF

d

dr

(
H

dF

dr

)
, (7)

where

g = −m2 − 1

r2
− k2

z

rF 2

{[
2µ0

(1 − ϒ2)

dp

dr
+ rF 2

+F
2[rkzBz − mBθ {2F/[F(1 − ϒ2)] − 1}]

M1,1

]}

− 2µ0ρ

r2F 2(1 − ϒ2)

{
r

[
d�

dr

(
� − m

r
Vθ

)

+
dVθ

dr

(
M1,1

r2
Vθ − m

r
�

) ]
+

m

r
Vθ

(
�

M1,3

M1,1
− m

r
Vθ

)

−2k2
zVθ (VθF − 2Bθ�)

F(1 − ϒ2)

}
. (8)

The dependence on the equilibrium flow of the coefficient C

and the second term in D is made more explicit by rewriting
them as

1

H

dH

dr
= M3,1

rM1,1
− 1

(1 − ϒ2)

dϒ2

dr

and

− 1

HF

d

dr

(
H

dF

dr

)
= − 1

F

(
M3,1

rM1,1

dF

dr
+

d2F

dr2

)

+
1

F(1 − ϒ2)

dF

dr

dϒ2

dr
.

It is easy to verify that the coefficients in equation (7)
reduce to those of [35] when the equilibrium flow is zero.
Indeed, noting that ϒ → 0 when � = G = ω = 0 (where,
as discussed later in the section, we set ω = −G(rs)), H

reduces to the no-flow expression of [35]. The first two terms
in g are seen to reduce to the expressions in [35] once it is
noted that in the flowless case (1 − ϒ2) → 1, F → F and
2F/[F(1 − ϒ2)] − 1 → 1. The remaining terms in g vanish.

The frequency ω present in equation (5) is in general a
complex number, ω = ωR − iγ , with ωR and γ real quantities.
In the remainder of the paper we will assume that the growth
rate γ of the resistive perturbation scales as γ ∝ 1/Sσ with
0 < σ < 1 (S being the usual ratio of the resistive diffusion
and Alfvén times). In the ideal region S → ∞, and thus the
terms containing γ are of higher order and can be dropped, in
the same way the resistive terms are excluded. Note that this
makes � real (and hence the entire equation (5)). Moreover,
with regard to the real part of the frequency ωR, we will set
ωR = −k · V|r=rs , i.e. we shift to a reference frame in which
the mode does not propagate at r = rs. This is done for
convenience, and does not influence the results of the stability
calculations.

We end this section by briefly discussing the singularities
present in the coefficients C and D. First we note that
C ∝ 1/[rM1,1(1 − ϒ2)] and D ∝ 1/[r5M1,1F

3(1 − ϒ2)2],
where M1,1 (defined in equation (6)) is a positive definite
function. Introducing U ≡ V(r) − V(rs) and the Alfvén
velocity VA = B/(µ0ρ)1/2, the parameter ϒ can be recast
as ϒ = k · U/k · VA. Noting that both k · U and k · B vanish
at the rational surface, ϒ is a measure of the shear in the flow
profile relative to the shear in the magnetic field. If the two
shear lengths are comparable, ϒ2 is proportional to the ratio of
the kinetic to magnetic energy in the plasma. The location rs
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of the rational surface, where F(r = rs) = 0, defines the usual
resistive singularity, which is removed by any finite amount
of resistivity. Additional singularities associated with the
presence of the flow occur at the points r = r̄s where ϒ2 = 1.
This condition identifies the Alfvén continuum associated with
a modified (i.e. with flow) Kelvin–Helmholtz ideal singularity.
These singularities, which are quite different in nature from the
one at the rational surface, have been discussed in [32]. In the
present work we consider only flow profiles which do not lead
to these additional singularities (i.e. 0 � ϒ2 < 1). Especially
for flow profiles close to the rational surface of the mode, this
will limit the magnitude of the velocity and thus of the strength
of the shear present in the flow. In all cases, however, the
magnitude of the velocities used in the calculations are not
less than those experimentally observed in RFP plasmas.

3. Stability parameter ∆′

The criterion for the stability of classical tearing modes in the
absence of flows and pressure gradient is given by [33, 35]

�′ ≡ lim
ε→0

[
1

B̃r (+ε)

dB̃r

dx

∣∣∣∣∣
x=+ε

− 1

B̃r (−ε)

dB̃r

dx

∣∣∣∣∣
x=−ε

]
< 0,

(9)
where B̃r is the solution of equation (5) which satisfies the
appropriate boundary conditions at r = 0 and at the plasma
minor radius r = a. This solution is singular at the location
r = rs where F = 0, and it is necessary to take a limit
to eliminate this singularity and obtain a finite value for �′.
Physically we can understand condition (9) by noting that �′,
the discontinuity of B̃ ′

r across the inner region, is a measure of
the magnetic energy to be gained by a perturbation producing
a magnetic island at rs. Hence a positive �′ leads to instability.
The procedure for finding B̃r and the value of �′ is summarized
as follows [33]: (i) solve equation (5) numerically in the
two regions r = [0, rs − δ] and r = [rs + δ, a] (where
δ is a small positive number greater than the half-width of
the resistive layer) as two separate initial value problems;
(ii) find an analytical solution of equation (5) valid near
r = rs (a solution that is fully specified by matching with the
numerical solution at r = rs ±δ); and (iii) using this analytical
solution in equation (9), find the stability factor. As noted, in
taking the limit the singular terms in the solution cancel out,
leading to a finite value for �′.

To find the analytical solution, equation (5) is expanded
around x = r − rs = 0. To a good approximation we obtain
(as discussed before, we are setting ωR = − k · V|rs

, i.e.
�(r = rs) = 0)

d2B̃r (x)

dx2
+

(c1

x
+

c2

x2

)
B̃r (x) = 0, (10)

where the coefficients c1 and c2, which are evaluated at r = rs,
are rather complicated functions of equilibrium quantities. In
the simple case of constant pressure and no flow, or flow
only along the axial direction with V ′

z (r = rs) = 0, these
coefficients reduce to

c1 → − M3,1

M1,1rs
− 2k2

z (rskzBz − mBθ)

rsM1,1F ′ − F ′′

F ′ , c2 → 0.

(11)

The appropriate series solution, valid in the ideal region near
the rational surface, is given in this case by

B̃a
r (x) =

∞∑
n=0

anx
n + ln |x|

∞∑
n=0

bnx
n.

The coefficients of this series can be found by substituting the
series into equation (10) and equating the terms with equal
powers of x. We obtain

B̃a
r,L(R)(x) = B̃s

(
1 − 3

4
c2

1x
2 +

7

36
c3

1x
3 − c1x ln |x|

+
c2

1

2
x2 ln |x| − c3

1

12
x3 ln |x| + · · ·

)

+B̃ ′
s,L(R)

(
x − c1

2
x2 +

c2
1

12
x3 + · · ·

)
+ O(x2), (12)

where L and R mean to the left (x < 0) and right (x > 0) of
the rational surface, respectively. Here we have set b0 = 0
(B̃a

r finite when x → 0), a0 ≡ B̃s (value of B̃a
r at x = 0) and

a1 ≡ B̃ ′
s,L. Upon substituting equation (12) in equation (9),

and taking the limit, the stability factor reduces to

�′ = B̃ ′
s,R − B̃ ′

s,L

B̃s

. (13)

The matching at x = −δ between this analytical solution and
the numerical solution of equation (5), B̃n

r (x = −δ) = B̃a
r,L

(x = −δ), B̃ ′n
r (x = −δ) = B̃ ′a

r,L (x = −δ), allows the
determination of the two constants B̃s and B̃ ′

s,L, while the the
matching at x = +δ, CB̃n

r (x = +δ) = B̃a
r,R (x = +δ), CB̃ ′n

r

(x = +δ) = B̃ ′a
r,R (x = +δ), allows the determination of B̃ ′

s,R
and of the normalization constant C, the latter reflecting the
linearity of the problem.

If Vθ �= 0 and/or V ′
z �= 0 at the rational surface,

or if pressure effects are accounted for, the coefficient c2

in equation (10) is nonzero. Because of the additional
singular term ∝1/x2, the appropriate series solution is now
of the form B̃a

r = |x|ν ∑∞
n=0 Anx

n. When substituted into
equation (10), two possible values for the index ν are found.
The corresponding independent solutions are usually referred
to as the small (subdominant) and large (dominant) solutions,
due to their different behaviour [36]. Here we don’t pursue
further this case since in all the calculations that follow we
consider only equilibria for which c1 �= 0, c2 = 0. The
appropriate expression for �′ is then given by equation (13).

As observed, the criterion �′ > 0 (�′ < 0) for
instability (stability) holds for classical, static tearing modes
[35]. However, when flow parallel to the magnetic flux
surfaces is present, unstable modes with �′ < 0 may exist
[26]. Moreover other effects not considered in this work,
like neoclassical effects [37], modify the stability criterion.
Therefore, for the results presented in the remainder of this
paper, the relevant quantity is the relative change in �′ induced
by the equilibrium flow. In the case of flows with no shear at
the rational surface, as considered here, an increase (decrease)
in �′ always corresponds to a destabilization (stabilization) of
the mode.

4. Numerical stability calculation with axial flow

We have numerically solved equation (5) to evaluate �′ in the
presence of various flow profiles characterized by a region of
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shear. We have considered only flows in the axial direction.
In the RFP configuration, flows localized at the outer edge
of the plasma are mainly toroidal, while, even if not zero,
poloidal flows in the central plasma region tend to be smaller
in magnitude than toroidal flows. The equation has been
nondimensionalized, using as reference quantities the minor
radius and the values of the magnetic field and the Alfvén
velocity on axis. It has been integrated as an initial value
problem in the two regions r = [0, rs − δ] and r = [rs + δ, a],
where δ is a small positive quantity better defined later in
this section. The numerical solver, taken from the Numerical
Algorithms Group (NAG) library available on the National
Energy Research Scientific Computing Center (NERSC), is
based on a variable-order, variable-step Adams method. We
have assumed a perfectly conducting wall at r = a, so that
B̃r (a) = 0. At the centre of the cylinder we adopt the regularity
conditions B̃r ∝ (1 + k2

z r
2)1/2, B̃ ′

r ∝ k2
z r/(1 + k2

z r
2)1/2 for

m = 1, and B̃r ∝ kzr , B̃ ′
r ∝ kz for m = 0. As explained in the

previous section, this numerical solution is matched with the
series solutions to evaluate the stability factor �′.

The matching point between the series and the numerical
solutions, i.e. the quantity δ, has been chosen so that at
x ≡ r − rs = ±δ both solutions are accurate. To find the
δ which is optimal for each �′ computation, we perform the
following steps. First we look for the maximum δ such that at
x = ±δ the percentage difference between the coefficient c1/x

of the expanded equation (equation (11)) and the corresponding
coefficient of the unexpanded equation (D in equation (7))
is less than or equal to a fixed tolerance value (say 0.15%).
Secondly, we verify that the round-off errors during the
computation of the coefficients of the unexpanded equation
(equation (5)) are still negligible as the location x = ±δ is
approached during the numerical integration. As an additional
verification, we also check that near the rational surface the
term proportional to the first derivative of B̃ is negligible when
compared with the term proportional to B̃. This has to be the
case, since the former term has been dropped in the expanded
equation (equation (10)). Once the quantity δ has been fixed,
we proceed with the calculation of �′. We keep the number of
terms in the series solution (equation (12)) that are necessary
to have a converged value for �′.

The equilibrium profiles of the magnetic field used in
the numerical calculations presented in the remainder of this
work were constructed from a polynomial fit to experimental
data of an MST spontaneous EC discharge. In particular,
the equilibrium is deduced from the experimental values of
two edge quantities, the reversal parameter Bz(a)/〈Bz〉 and
the pinch parameter Bθ(a)/〈Bz〉, where 〈· · ·〉 represents a
volume average, and a is the minor radius [38]. Although this
method of reconstructing the equilibrium magnetic profiles is
inherently approximate, it leads to profiles which capture the
main large-scale features of real equilibria. The minor and
major radii are respectively a = 52 and R = 150 cm. In
figure 1 we present equilibrium profiles of Bz, Bθ , q and F ,
the latter for an m = 1, n = −6 mode. The toroidal field and
the safety factor on axis are respectively 0.23 T and 0.17, and
the reversal radius is located at rr = 38.93 cm. Moreover, we
assume a constant particle density equal to n0 = 1×1019 m−3.
Note the deep reversal of the magnetic field, a characteristic
of most low-current spontaneous EC discharges. We will

refer to this equilibrium as the spontaneous EC reference
configuration. It will be the starting point for studying the
influence of shear flow on �′. When no equilibrium flow is
present, we have found �′

m=0,n=−1 = −1.06, �′
m=1,n=−8 =

−0.19, �′
m=1,n=−7 = +0.87 and �′

m=1,n=−6 = +3.74 (here
and in the remainder of the paper we report the nondimensional
value of the stability factor, as obtained by multiplying it by
rs). Thus the m = 0 and the m = 1, n = −8 modes are
stable, while the n = −7 and n = −6 helicities of the m = 1
mode are unstable, the latter being the most unstable. For these
equilibrium profiles the m = 1, n = −5 mode is not resonant.
Note that the n = −1 helicity is the least stable m = 0 mode.
For example, the m = 1, n = −20 mode has been found to
have �′ = −8.26. In figures 2 and 3 we present the radial
magnetic field eigenfunctions for the m = 0 and the m = 1,
n = −6 modes. Via the optimization procedure discussed
earlier in this section we have found, for example, that the
optimal matching location (to satisfy a percentage tolerance
value �0.15%) for the m = 1, n = −6 mode is obtained for
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Figure 1. Axial magnetic field Bz (T), poloidal magnetic field Bθ

(T), safety factor q (n.d.) and F = k · B (T/m) (the latter relative to
the m = 1, n = −6 mode) equilibrium profiles (MST discharge no
275, 21 April 2000).
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Figure 2. Perturbed radial magnetic field eigenfunction for m = 0
modes with no flow. The vertical line marks the location of the
rational surface.
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Figure 3. Perturbed radial magnetic field eigenfunction for the
m = 1, n = −6 mode with no flow. The vertical line marks the
location of the rational surface.

δ = 2.31 × 10−4 m, and that only three terms in the series
solution are needed to obtain a converged �′.

4.1. Stability of the m = 1 mode

The major contribution to magnetic fluctuations in MST comes
from m = 1 core modes with toroidal mode number n

ranging between −5 and −8. For the spontaneous EC profiles
presented in figure 1, the n = −5 mode is nonresonant. As we
have found in the previous section, the most unstable mode
is the m = 1, n = −6, resonant at rs = 10.51 cm with
�′ = +3.74. The flow profiles and intensities used in the
numerical calculations have been selected with the present
experimental knowledge of standard (low confinement) and
spontaneous EC MST discharges in mind. This knowledge is
briefly summarized as follows. The flow profile of a standard
MST discharge appears to be monotonically decreasing from
the plasma core to the edge. Core velocities are estimated
to be around 10–20 Km s−1, while at the edge the velocity
drops to near zero or reverses direction, with a magnitude
of few Km s−1 [39]. This global-scale flow profile is seen
to persist during spontaneous EC discharges. In the latter,
however, an additional edge-localized region of E × B flow,
induced by a self-generated radial electric field, sets up
outside the reversal radius. From the radial force balance
equation, Er = ∇pi(niZie)

−1 − (Vi × B)r , and the available
experimental data on the radial electric field, a rough estimate
of the maximum toroidal rotation gives a lower bound of
Vφ > Er/Bθ 
 65 Km s−1 (assuming no pressure gradient
and negligible poloidal rotation at the plasma edge) [40].
Guided by these data, we have performed �′ calculations in the
presence of an axial flow which is either confined in a narrow
region on the outer edge of the plasma (see figure 4), or extends
all across the plasma with shear confined in the middle region
of the plasma (see figure 5). Note how both velocity profiles,
the latter modelled by a hyperbolic tangent, have zero or
negligible gradient at the location of both m = 1, n = −6 and
m = 0 modes. Thus, neglecting pressure gradient effects, the
appropriate formula for the stability factor is the one presented
in equation (13). Notice that the edge-localized flows of
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Figure 4. Edge-localized flow profiles used in the stability
calculations (the centre location, width and magnitude of these flows
have been varied in the numerical studies).
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Figure 5. Global axial flow profile used in the stability calculations.
The gradient of the flow is zero, or negligible, at the location of the
rational surfaces.

figure 4 all have discontinuous first derivatives at the boundary
of the flow region. As can be easily seen from equations (5)
and (7), this feature does not preclude the smoothness of B̃r

(no second or higher derivatives of the flow are present in
equation (5)). No particular precaution needs to be taken in
numerically integrating across the boundaries of the region
with flow, and the discontinuities in the flow do not invalidate
the computed �′. The amplitudes of the velocities employed in
the numerical calculations have been chosen to span a range of
values that includes those relevant to experimental conditions.
In some calculations, we have used values of the flow intensity
that are above those experimentally observed. This has been
done to establish trends; reducing these intensities to more
realistic values does not change qualitatively the results.

Most of the present section will be devoted to the study
of the influence of selected flow profiles on the stability of the
the m = 1, n = −6 mode for the spontaneous EC reference
configuration. At the end of this section we will report results
on the m = 1 modes with n = −7, −8 and n = −9. In the
flowless case these helicities are stable, or much less unstable
that the n = −6 helicity, and thus play a minor role in the
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plasma dynamics. It is important to verify that this situation is
not altered when plasma rotation is considered.

We explicitly note that a Vz flow which is constant
everywhere in the plasma does not influence the stability of
the mode. Similarly, a simple reversal of the direction of an
axial flow (Vz → −Vz) does not change the stability of the
mode. These facts follow from the z-translational invariance
of a cylindrical plasma. What is relevant is the sign (and
magnitude) of the combination Vz V ′

z .
In the first study we have considered the parabolic,

triangular and cusp axial flow profiles shown in figure 4 as
representative of localized flows. In the present case these
flows are located outside the reversal radius between r = 40
and r = 45 cm. The magnitude of the flow at its central
location (r = 42.5 cm) is Vz,max = 0.3 × VA 
 206 Km s−1,
where VA 
 688 Km s−1 is the Alfvén velocity evaluated at the
same location. We have found that these three flow profiles
are all destabilizing, the stability factors being increased to,
respectively, �′ = +4.02, +3.90 and +3.83 (corresponding to
percentage increases of (�′ −�′

no flow)/�′
no flow ×100 = 7.37,

4.34 and 2.53%). If the maximum intensity of the flow is
reduced to 
48 Km s−1, the percentage increase in �′ for the
n = −6 helicity is reduced to 0.33%. In figure 6 we plot
the corresponding B̃r eigenfunctions across the outer region
of the plasma. As seen from these plots, the eigenfunctions
to the right of the rational surface are changed by the flow
in such a way to increase their positive derivative at r = rs.
Since the eigenfunctions on the left side of the rational surface
have remained unchanged, the stability factor �′ increases.
The reason why the parabolic profile is the most destabilizing
of the three flows is mainly due to the fact that the velocity
averaged over the region of flow is greater in the former case.
Effects related to the different shape of the flow profiles are of
secondary importance.

Next we have reconsidered the parabolic flow profile and
performed two parametric studies to investigate how the inten-
sity of the flow and its central location affect �′. The results
are presented in figures 7 and 8. The first figure presents �′ as
a function of the parameter (Vz,max/LV )/(VA/a), where LV is
the width of the flow region, and Vz,max the intensity of the flow
at its central location. This parameter is the natural extension of
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Figure 6. m = 1, n = −6 perturbed radial magnetic field
eigenfunction for the parabolic, triangular, cusp and reference (no
flow) cases.

the ratioG′(rs)/F
′(rs) to the case of a flow localized in the outer

region. This ratio has been shown to be the relevant quantity in
assessing the influence of an equilibrium flow inside the resis-
tive layer on the stability of tearing modes (see, e.g. [31]). We
see that the mode is increasingly destabilized as the intensity
of the shear flow increases, the destabilization being roughly
quadratic in (Vz,max/LV )/(VA/a). Figure 8 presents �′ versus
the centre location of the flow region. In this study the maxi-
mum intensity of the flow is held constant at Vmax = 0.1×VA 

68 Km s−1. We see that as the centre location is moved closer to
the rational surface, the destabilizing action of the flow is more
pronounced. As discussed in detail in the following section,
this is due to the fact that the magnitude of the perturbed mag-
netic field eigenfunction overlapping with the region of flow
shear increases as the latter approaches the resonant surface.

We perform a final numerical study to assess the influence
of the broad flow profile of figure 5 on the stability of the
m = 1, n = −6 mode. This broad flow profile is representative
of the differential rotation that is observed in MST discharges.
The rotation of the plasma increases in going from the edge to
the centre of the plasma. We have evaluated the stability of the

0 1.3 2.6 3.9 5.2
(Vzmax/LV)/(VA/a)

∆�
 [n

.d
.]

 

3.7

4.05

4.4

4.75

5.1

Figure 7. Stability factor of the m = 1, n = −6 mode vs the
parameter (Vz,max/LV )/(VA/a) for an axial, edge-localized
parabolic flow.
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Figure 8. Stability factor of the m = 1, n = −6 mode vs the centre
location of an axial, localized parabolic flow.

502



Tearing mode stability with equilibrium flows

mode in the presence of such a flow, considering a maximum
velocity (at r = 0) equal to 
48 Km s−1. We have found
that this flow is destabilizing, increasing the stability factor to
�′ = +4.50, which corresponds to a 20.3% increase.

The other m = 1 helicity that is resonant and unstable is
the n = −7. We have verified that a flow profile localized in
the outer region of the plasma is destabilizing for the m = 1,
n = −7 mode, as it is for the n = −6 mode. For example,
the same parabolic axial flow that increases �′ of the n = −6
mode by 7.37%, also increases �′ of the n = −7 mode. In the
latter case the increase is greater (15.8%), since the location
of the rational surface of the n = −7 mode is closer to the
region of flow shear. The effect of the global flow profile
of figure 5 on the stability of the n = −7 mode is however
potentially very different. The profile of figure 5 has two
important features of relevance to this discussion: (1) the flow
increases in going from the edge to the centre of the plasma,
having the shear concentrated mainly in the middle region of
the plasma, and (2) it has negligible shear at the locations of
the m = 1, n = −6 and of the m = 0 modes. While the first
feature is suggested by experimental data, the second feature of
the profile allows us to compare the effect of the same global
profile on the stability of both m = 1, n = −6 and m = 0
modes, for situations in which there is no stabilizing effect due
to flow shear inside the resistive layer [31]. Avoiding resistive
layer effects by the adoption of this tanh-like flow profile is
realistic for the n = −6 mode, since near the centre of the
plasma any axial flow profile is likely to have negligible shear
for geometrical reasons. The situation is however different
for the n = −7 mode. The rational surface of this mode is
at rs = 18.12 cm, about 8 cm more toward the middle region
of the plasma than the rational surface of the n = −6 mode.
The n = −7 mode is then located right where a strong shear
is expected, and effects related to the presence of shear flow
inside the resistive layer need to be considered. In particular, it
is known that if there is a strong shear flow inside the resistive
layer of a mode, the mode is stabilized by inner layer effects,
independent of the value of �′ obtained with ideal MHD
calculations [31]. Stabilization occurs whenever the quantity√

µ0ρG′/F ′ evaluated at the rational surface is greater than or
equal to 1. From this consideration emerges the possibility that
the global profile observed in spontaneous EC regimes could
cause an increased destabilization of the m = 1, n = −6 mode
(with respect to the flowless case), while stabilizing (or at least
reducing the growth rate of) the m = 1, n = −7 mode. For
example consider moving the location of the maximum shear of
the hyperbolic tangent flow profile of figure 5 to the location of
the m = −1, n = −7 mode rational surface, and increasing its
central velocity up to Vz,max = Vz(r = 0) 
 203 Km s−1 (0.13
of the value of the Alfvén velocity at the centre). The parameter√

µ0ρG′/F ′ evaluated for the n = −6 and the n = −7
modes corresponding to this modified tanh-like profile are,
respectively, 0.0883 and 1.0002. Hence this profile increases
the instability of the n = −6 mode (due to ideal effect), while
it stabilizes, via inner layer effects, the n = −7 mode.

We conclude this section by considering the effect of the
parabolic, edge-localized flow on the m = 1, n = −8 and
n = −9 modes. In the absence of flow, these modes are
linearly stable with �′

n=−8 = −0.19 and �′
n=−9 = −0.98.

The 5 cm-wide parabolic flow profile centred at r = 0.45 m

and of maximum intensity Vz,max = 0.3 × VA 
 206 Km s−1

increases the stability factor of these two modes up to −0.02
and −0.72, respectively. Despite its large intensity, this flow
does not lead to destabilization of either mode.

In summary, we have found that both a broad flow profile
with shear concentrated over the middle region of the plasma
and a flow localized in the outer edge of the plasma further
destabilizes the m = 1, n = −6 mode. A flow localized in
the outer edge of the plasma further destabilizes the m = 1,
n = −7, −8, −9 modes, too. When considering the effect
of a global flow profile on the n � −7 modes, however,
results based on ideal MHD alone need to be integrated with
a consideration of resistive effects. Since the location of the
rational surface of these modes is located in a region of strong
flow shear, resistive effects alone could stabilize these modes.

4.2. Stability of the m = 0 mode

In figure 2 we have presented the B̃r eigenfunction for the
m = 0, n = −1 mode under the reference equilibrium profiles
presented in figure 1. The singular surface is located at the
reversal radius, rs = rr = 38.91 cm. As seen before, this
mode is stable, with �′

m=0 = −1.06. This is the helicity (i.e.
n number) of the m = 0 mode with the smallest (absolute)
value of the stability factor.

We have repeated for the m = 0 mode the stability
calculation for a flow localized in a narrow region between
the mode resistive layer and the edge of the plasma. The flow
profiles are centred at r = 45 cm, and have a total width of
LV = 4 cm. The centre location is thus located 6.06 cm to the
right of the rational surface. As for the m = 1 case, we have
considered the parabolic, triangular and cusp profiles. The
maximum velocity has been set to Vz,max 
 52 Km s−1. Like
the m = 1 case, we have found that these localized flows are
all destabilizing. However, since the m = 0 mode is stable in
the absence of flow, the effect of the flow is more important
than for the m = 1 case. In the latter case, the shear flow only
increases the instability of a mode which is already unstable
without flow. Moreover, the relative increase in �′ is small
since the flow is located far away from the rational surface. In
the m = 0 case, the proximity of the flow to the rational surface
leads to a strong destabilizing effect. The stability parameter
goes from being negative to being positive, i.e. the flow drives a
stable mode unstable. For example, the stability factor with the
parabolic flow, which is the most destabilizing of these three
flow profiles, is �′ = +0.59. To better quantify this important
effect of a localized flow on the stability properties of the
m = 0, n = −1 mode, we have reconsidered the parabolic
flow profile and gradually increased its maximum intensity.
The results of this parametric study are presented in figure 9.
Interpolating these data, the marginal stability condition is
obtained for a maximum flow of 
43 Km s−1, or equivalently
for (Vz,max/LV )/(VA/a) = 0.86.

We have also repeated the broad flow profile study, as done
for the m = 1 mode. The profile is the same one used for the
m = 1 study (see figure 5). The velocity and its derivative are
negligible at the location of the m = 0 rational surface. As
with the corresponding m = 1 study, the maximum intensity
of the flow has been set to 
48 Km s−1. We have found that
the value of the stability factor increases from −1.06 with no
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Figure 9. Stability factor of the m = 0, n = −1 vs the parameter
(Vz,max/LV )/(VA/a) for an axial, edge-localized parabolic flow.

flow to −1.05. In contrast to the m = 1 case, the stability
of the m = 0 mode is almost unaffected by the flow. In the
following section we will reconsider this result together with
the corresponding result for the m = 1 mode, and show that
their difference is explainable in terms of the relative location
between the peak in the corresponding B̃r eigenfunctions and
the region of shear flow.

In summary, we have found that the m = 0 mode is
strongly destabilized by a flow with shear which is localized
to a narrow region at the outer edge of the plasma. This effect
is important, since a flow with magnitude of the order of those
experimentally observed in MST drives the m = 0 unstable.
On the contrary, a tanh-like flow profile with shear in the region
between the m = 1, n = −6 rational surface and the reversal
radius does not change appreciably the stability factor of the
m = 0 mode, and thus the mode remains stable even in the
presence of the flow.

5. Analytical stability considerations

Due to the complicated way in which the equilibrium flow
enters the coefficients (equation (7)) of equation (5), it is
rather difficult to gather from them information on how a
selected flow profile influences the stability of a mode. In
this section we present an expression for �′ which helps
clarify how the characteristics of the flow influence the stability
of tearing modes. To derive this result, we start from the
generalization to cylindrical geometry of equation (60) in [23],
which was derived in slab geometry. This equation is obtained
by recasting equation (5) into a Schrödinger-like equation,
a procedure which identifies the equivalent of the potential
energy for the problem. In terms of the new dependent variable
φ = r(1 − ϒ2)1/2B̃r/M

1/2
1,1 , equation (5) is transformed into

1

r

d

dr
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− U(r)φ = K2φ, (14)

where K2 = m2/r2 + k2
z , and the potential U is given by
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From this equation an expression for �′ can be readily derived.
Multiplying by φ, integrating by parts in the two regions
r = [0, rs − ε] and r = [rs + ε, a] (with ε a small positive
number), adding the resulting two equations, and finally taking

the limit ε → 0, we obtain (
∫ a

0 ≡ limε→0(
∫ rs−ε

0 +
∫ a
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where φs = φ(rs), U0 is the flowless part of the potential,
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and U1 ≡ U − U0 is the remaining part of the potential that
is nonzero only in the presence of flow. The latter can be
conveniently divided into two contributions,

U1(r) = U1,1 + U1,2, (17)

where
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contains only derivatives of the flow, and
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In deriving equation (16), we have assumed that the function
φ/B̃r and its first derivative are continuous functions of r

near rs. This has been the case for all flow profiles used in
the numerical simulations presented in this paper. Looking
at equation (16), we notice that the first integral is always
stabilizing, its integrand being a positive definite function. The
remaining two integrals can be both stabilizing or destabilizing,
depending on whether their integrands are positive or negative,
respectively. The (d2F/dr2)/F term in U0, which is the only
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one surviving in slab geometry (except for the pressure gradient
term), contains the destabilizing effect of the current density
gradient. In figure 10 we plot the function r × U0 × (φ/φs)

2,
i.e. the integrand in the second integral in equation (16) for
the m = 1, n = −6 mode in the reference configuration
with no flow. The current density destabilization effect
included in U0 occurs to the right of the rational surface,
where the second integral in equation (16) is negative. The
major destabilization contribution occurs near the location of
the singular surface, where the B̃r eigenfunction peaks (see
figure 3). From equation (16) it is apparent that, since (φ/φs)

2

is a positive function, the local criterion for flow stabilization
is U1 > 0. Note however that this is true only for small
flows, i.e. for ϒ2 � 1. When this condition is not satisfied,
the modifications induced by the flow to the eigenfunction
φ itself could change the values of the first two integrals in
equation (16) in such a way to increase/decrease �′ even for a
U1 which is positive/negative everywhere. Other than through
the positive factor (1 − ϒ2) and the term directly proportional
to dV 2/dr , the flow enters in U1,1 through the first and second
derivatives of ϒ2. These derivatives can be expressed in terms
of � and F as follows:
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Note how only Vz enters these expressions when m = 0.
As just observed, in the case in which ϒ2 � 1, the plot

of the function r ×U1 in the region of shear flow gives precise
indications on where the flow is stabilizing or destabilizing
according to where r × U1 is positive or negative. Combined
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Figure 10. The function r × U0 × (φ/φs)
2 for the m = 1, n = −6

mode of the reference configuration with no flow.

with the fact that the remaining term in the integrand is a
positive definite function which tends to be monotonically
decreasing sufficiently away from the rational surface of the
mode, an indication could also be gained about the magnitude
of stabilization or destabilization of a given flow profile. As
an example, we reconsider the case of an axial flow profile
localized in the outer region of the plasma between the reversal
radius and the minor radius, and check if the information based
on the potential energy just formulated supports the result
obtained by the numerical computation of the stability factor
for the m = 0, n = −1 mode. The information will be gleaned
from plots of the potential energy associated with the flow.
The localized flows considered before all have discontinuous
derivatives at the boundary of the flow region. Although this
feature does not preclude the smoothness of B̃r , it would lead
to nonrealistically discontinuous curves for the total potential
energy. To avoid this, we select for the following study a
Gaussian profile. This profile is centred at r = 0.45 m, has an
half-width equal to 1.06 cm, and has a maximum velocity of
Vz,max 
 52 Km s−1. Similarly to the parabolic profile, we find
that this Gaussian profile is destabilizing. The stability factor
goes from −1.06 to +0.35, i.e. the mode is driven unstable. In
figures 11 and 12 we plot respectively the functions r ×U1 and
r ×U1 × (φ/φs)

2, and (φ/φs)
2 associated with this flow. From
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Figure 11. The functions r × U1 (- - - -) and r × U1 × (φ/φs)
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(——) for the Gaussian flow profile.
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Figure 13. The four terms in U1 for the Gaussian flow profile.

the first figure we see that the function r×U1 is negative near the
edge of the flow region, giving destabilizing contributions, and
becomes positive in the central region of the flow profile, giving
a stabilizing contribution. The net effect is destabilizing. (The
total area under the curve is = −1.07.) Moreover, the plot of
the weighting function (φ/φs)

2 (figure 12) shows how in the
integration the central stabilizing region of the flow is weighted
much less that the left-edge destabilizing region. This is
evident from the plot of the complete integrand (the solid line
in figure 11): the extent of the central stabilizing region is
reduced. Since the last integral in equation (16) is negative
(the total area under the curve is = −1.88), the parabolic flow
profile is destabilizing, as found numerically. (The reason
why �′ increases by only 1.41 < 1.88 is because, as noted
before, the intensity of the flow makes the B̃r eigenfunctions
with and without flow differ by a significant amount. As a
consequence, the remaining integrals in equation (16) (the first
two in the equation) give also a contribution to �′, even though
the coefficients K2 and U0 do not explicitly contain the flow.)
To better understand which features of the flow profile lead to
destabilization, we further decompose U1,1 into the following
three contributions,

U1,1(1) = 1

(1 − ϒ2)

[
−

(
1

F

dF

dr
+

M3,1

2rM1,1

)
dϒ2

dr

+
µ0ρk2

z

rF 2

dV 2

dr

]
,

U1,1(2) = 1

4(1 − ϒ2)2

(
dϒ2

dr

)2

,

U1,1(3) = − 1

2(1 − ϒ2)

d2ϒ2

dr2
,

and plot them, together with the remaining term U1,2, in
figure 13 (in the figure, the three terms in U1,1 are labelled (1),
(2) and (3), while U1,2 is labelled (4)). It is evident from these
curves that the major contribution to U1 comes from U1,1(3),
i.e. the term proportional to the second derivative of ϒ2.

We terminate this section by reconsidering the global
profile studies of the m = 1 and m = 0 modes. We have
found that the flow profile presented in figure 5 is destabilizing
for the m = 1 mode, while it leaves practically unchanged the
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Figure 14. Comparison of the functions r × U1 × (φ/φs)
2 for the

m = 0 and m = 1 modes with global flow profile in the axial
direction.

�′ of the m = 0 mode. The reason for this difference can be
seen from figure 14 where we plot the function r×U1×(φ/φs)

2

for the two cases. The areas under the two curves, although
both negative, are quite different. The area under the m = 0
mode is much smaller than that of the m = 1 mode, as expected
from the numerical results. This follows because the peak of
the B̃r eigenfunction occurs within the region of shear flow
for the m = 1 case, while it occurs far away from it in the
m = 0 case.

6. Summary and discussion

We have studied the linear stability of classical tearing modes
for RFP equilibria with flows. To this end, a computer code
that evaluates the linear stability parameter �′ for the RFP
has been developed. The code has been used to investigate
the linear stability of both core- and edge-resonant tearing
modes in spontaneous EC discharges in the MST. Among the
characteristics of the spontaneous EC regime are a reduced
level of magnetic fluctuations, the presence of an E × B shear
flow localized at the edge of the plasma, and the occurrence
of periodic bursts of m = 0 activity. Moreover, some
spontaneous EC regimes enter a state in which the magnetic
fluctuation spectrum is dominated by the innermost resonant
m = 1 mode (QSH state). The magnetic field equilibrium
used in the computations has been created by interpolating
experimental profiles modelled for a discharge which had
bifurcated into a spontaneous EC regime. To this equilibrium
configuration we have added flows which are representative of
those observed during spontaneous EC regimes. In particular,
we have considered two classes of flow profiles. The first
class consists of axial flows which are localized in a narrow
region of the plasma outside the reversal radius. These
flows are observed to form spontaneously right after a crash
whenever the equilibrium bifurcates into a spontaneous EC
regime. The second class of profiles consists of axial flows
which are nonzero over most of the plasma, and have a shear
localized mainly between the location of core and edge modes.
This latter class of flows mimic the pattern observed between
crashes in both standard and spontaneous EC discharges.
Only immediately after the crash is this global flow pattern
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temporarily modified: the rotation of the core mode slows
down, and the plasma temporarily rotates quasirigidly. Note
that a constant axial flow does not influence the stability of
tearing modes.

For the spontaneous EC profiles used in the numerical
calculation, and in the absence of equilibrium flows, the m = 1,
n = −5 mode is not resonant, the m = 1, n = −6 and
the m = 1, n = −7 modes are unstable (with �′ = +3.74
and +0.87 respectively), the m = 1, n = −8 and n = −9
are stable (�′ = −0.19 and −0.98, respectively), and the
m = 0, n = −1 mode is stable (�′ = −1.06). All the
representative flow profiles considered in this paper (which
have no or negligible shear in the inner layer of the mode)
have been found to increase the stability factor �′ of both
core and edge tearing modes with respect to the static case.
For example, an edge-localized parabolic flow profile 5 cm
wide and of maximum velocity equal to 
48 Km s−1 increases
the stability factor of the m = 1, n = −6 mode by 0.33%,
while a tanh-like global flow profile with the same maximum
velocity increases it by 20.3%. This result indicates that the
effect of an axial flow on the linear stability of the m = 1,
n = −6 mode doesn’t lead to substantial changes to the
overall plasma characteristics, since it increases by a relatively
small amount the stability factor of a mode which is already
unstable without flow. Stability calculations for the m = 1,
n = −7, −8, −9 modes in the presence of an edge-localized
flow show the analogous trend of �′ increasing with flow shear.
Despite this, we have found that the latter two helicities, which
are stable without flow, do not become unstable under flows
whose magnitudes are comparable to those of experiments. In
contrast with the n = −6 case, however, a study of the effect
of a global flow profile on the stability of the n � −7 modes
(and in particular of the n = −7 mode, which is unstable
in the static case) needs to include consideration of resistive
effects, since the flow is likely to have a significant shear inside
the inner layer of these modes. If this shear is sufficiently
strong, resistive layer effects could lead to a stabilization of
the n = −7 mode, independent of the value of �′. With
regard to the m = 0, n = −1 mode we have found that, like
the m = 1 case, both an edge-localized and a global axial flow
add a positive contribution to the stability factor. However, this
effect is notably more important than for core modes, since the
m = 0 mode is stable in the absence of flow. In particular,
while a global flow profile makes the mode less stable by a
very small amount, a localized flow can reverse the sign of
the stability factor, thus driving the mode linearly unstable.
For example, a parabolic flow profile of maximum intensity of

52 Km s−1, 4 cm wide and with its centre located 6 cm to the
right of the reversal radius increases the stability factor of the
mode from the flowless value of −1.06 to +0.59.

We now discuss the possible implication of these findings,
beginning with the result that the m = 0 mode can be
driven unstable by a region of shear flow localized near the
edge of the plasma. (The physics underlying the generation
and maintenance of the edge-localized shear flow is not
addressed here. Although various explanations have been
proposed (in the RFP context, see for example [41, 42]), the
problem remains, at present, open.) We speculate that the
destabilization of the m = 0 mode by an edge-localized E×B

axial shear flow could be related to the m = 0 bursts observed

in spontaneous EC discharges. To see how, we go back to
equation (16). The most important terms in the flowless part
of the potential, U0, are the drives associated with the current
density and pressure gradients,

U0 ∝ +
1

F

d2F

dr2
+

2µ0k
2
z

rF 2

dp

dr
.

(The other terms in U0 are related to geometrical effects, and
are not present in slab geometry.) For the magnetic equilibrium
profiles of figure 1 and a pressure profile monotonically
decreasing with radius, these two terms are both destabilizing
(negative). The other term in equation (16) which can be
positive or negative is the U1 term associated with the flow. As
seen earlier, for an edge-localized flow this term is destabilizing
(negative). On the basis of these considerations, it is seen
that a time-dependent destabilization of the m = 0 mode
could occur in two ways (or a combination of the two): U1

oscillates in time while U0 is constant, or U0 oscillates in time
while U1 is constant. The first scenario could occur if the
mechanism which generates the flow is periodic in nature, i.e. it
is due to an instability which periodically reaches the instability
threshold, and then decays due to some sort of quasilinear
stabilization (as in a predator–prey instability model). If this
is the case, the intensity of the flow generated by this instability
could be oscillating in time, subject to periodic generation and
viscous decay, ultimately leading to a periodic destabilization
of the m = 0 mode. In particular, from our simulations
we found that the maximum intensity of a parabolic flow
centred at r = 45 cm and 4 cm wide which destabilizes the
m = 0 mode is of the order of 40 Km s−1. This value is only
indicative, since small changes in the flow profile could change
significantly this threshold value. We note that at present there
are no experimental data which either prove or disprove a
time dependence of the E × B shear flow of spontaneous EC
discharges. Related data however indicate that a periodic time
dependence of the flow is likely [40]. In the other scenario,
the drive from the U1 term is constant, i.e. it is due to an edge-
localized flow which is stationary during the spontaneous EC
regime. The required time dependence would then come from
U0 as follows. The initial creation of the flow region, which
marks the transition to the spontaneous EC regime, destabilizes
the m = 0 mode, according to the findings reported in
figure 9. This leads to a rapid increase of magnetic turbulence
around the location of the m = 0 rational surface, with
consequent local flattening of the equilibrium profiles (both
current density and pressure). This flattening is a fast process,
tied to anomalous transport processes. Due to this profile
modification, the drive introduced by U0 diminishes, until the
stability factor �′ becomes negative, and the m = 0 mode
is stabilized. This burst phase is followed by a slower ramp
phase, during which classical diffusion processes ultimately
restore the original equilibrium profiles. The cycle could
then repeat itself. Note that this dynamics is like that of
the sawtooth crash associated with the m = 1 mode [43].
The only difference is that in the case of the m = 0 bursts, the
free energy driving the mode unstable is coming, according to
our scenario, from a combination of the current density and
pressure gradients, and the flow shear, whereas the current
density gradient and the pressure gradient are the only factors
for the m = 1 sawtooth cycle. Periodic bursts of m = 0 activity
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are also observed during pulsed poloidal current drive (PPCD)
MST plasmas [44]. PPCD plasmas are obtained by inducing
auxiliary parallel current drive in the plasma edge, and present
a significantly reduced level of m = 1 fluctuations. Also,
recently a new induction technique that avoid the reversal of
the surface parallel electric field has resulted in PPCD plasmas
with no m = 0 bursts [45]. The cause of the m = 0 bursts
nor the mechanism by which they are suppressed in PPCD
plasmas is not yet established. However, we observe that
manipulation of the edge electric field is very likely to strongly
modify the local profile of the plasma rotation. The connection
between the m = 0 activity and edge shear flow just discussed
in the context of spontaneous EC discharges could apply to
PPCD plasmas as well. With regard to the m = 0 bursts,
we finally observe that, according to our calculation, all the
m = 1 helicities which are stable in absence of flow (n � −8),
are not destabilized by the edge-localized parabolic flow that
destabilizes the m = 0 mode. We have found this to be true up
to values of the maximum flow velocity that exceed the likely
magnitude of experimental flows.

The equilibrium profiles used in the numerical calcula-
tions are characterized by a strong reversal of the toroidal mag-
netic field. Because of this, the edge-localized flows used in
the simulations do not overlap with the resistive layer of the
m = 0 mode. This seems to be the case for spontaneous
EC regimes with total plasma current of about 200–250 kA.
However, spontaneous EC regimes with higher plasma cur-
rent tend to have a shallower reversal [15]. In these regimes,
the E × B shear flow could be partially overlapping with the
m = 0 inner layer, and stabilization due to resistivity effects
could play a role.

Discharges with an externally induced E × B edge-
localized flow shear have also been experimentally investigated
in MST. These discharges show a reduction of edge-localized
electrostatic fluctuations, but no m = 0 bursts or reduction
in global magnetic fluctuations [46]. However, the maximum
intensity of the shear flow induced so far in these regimes
has been smaller than the shear flow of the spontaneous EC
regimes. The speculations on a possible destabilization of the
m = 0 mode by an edge shear flow are therefore not applicable
to present biasing experiments.

A final observation regards QSH states. These states may
be beneficial for RFP confinement in that they have a reduced
level of magnetic stochasticity [47]. In the MST RFP, QSH
states have been observed in both standard and improved-
confinement discharges, and are usually characterized by a
spectrum dominated by the innermost resonant m = 1 mode
[48]. Except for the edge-localized E × B flow, standard,
PPCD and spontaneous EC discharges in MST appear to have
a similar large-scale rotation pattern. In section 4.1 we found
that if inner layer effects are neglected, the tanh-like global flow
profile of figure 5 further destabilizes the n = −6 helicity of the
m = 1 mode. However, we have also noted there that, while a
realistic flow profile would tend to have negligible shear near
the centre of the plasma, where the n = −6 mode is located,
it would have a significant amount of shear at the location of
higher m = 1 helicities. In some discharges, the shear flow
present inside the resistive layers of then � −7 modes could be
large enough to stabilize these modes (or at least to reduce their
amplitudes), independent of the value of the stability parameter

based on ideal MHD calculations. A consideration of ideal and
resistive effects of a global flow profile with significant shear
in the middle region of the plasma (where the m = 1, n � −7
rational surfaces are located) thus suggests that a plasma state
in which only the m = 1, n = −6 mode, i.e. the innermost
resonant mode, is unstable (or at least dominates) is possible.
QSH states in MST could then be explained by a consideration
of shear flow effects on the stability of the tearing modes.

To conclude, we point out some facts regarding the validity
and the limitations of the results presented in this work.
The first point regards the intensity of the equilibrium flows.
Sufficiently large flows can affect the equilibrium profiles,
which in turn change the stability of the plasma. In our
simplified geometry, this is however true only for poloidal
flows. Axial flows, which have been considered in this work,
do no enter the radial force balance equation and hence leave
the equilibrium unchanged. Our results are thus not limited
by this factor. More realistic geometries and/or inclusion of
poloidal flows would require a self-consistent modification
of the equilibrium. The stability of the plasma could also
be affected directly by flow with intensities large enough
to introduce the additional Alfvén-like singularities. This
effect has been studied in [32]. We stress however that the
flow intensities considered in our numerical calculation are
consistent with experimental data; larger flows are unlikely
to be realistic. Secondly, we observe again that, although
our analysis is strictly linear and tearing modes enter the
nonlinear phase at very low amplitude, there is evidence that
nonlinear effects do not substantially change the threshold of
instability, �′ = 0 [19, 20]. The results obtained in this work
could then retain their value well into more realistic nonlinear
regimes. A third source of approximation that is present in this
work is the uncertainty in the adopted equilibrium magnetic
profiles. As discussed in section 4, the method of constructing
these profiles is based mainly on experimental data obtained
at the edge of the plasma. Although the resulting profiles
reproduce fairly well large-scale features of real discharge
equilibria, they are not able to capture finer-scale features that
might be relevant to the stability calculations presented in this
work. Finally we stress that, at present, data on the intensity,
location and profile of the flows present in MST discharges are
still approximate. As a consequence, the model flow profiles
used in our calculations have been chosen not only to reflect
the (limited) experimental information presently available, but
also for computational convenience. Until more definitive data
are available, studies like the one presented here need to be
considered as qualitative explorations of possible important
scenarios, more than quantitative studies of realistic situations.
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